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Unfortunately it took most of the contract period to do so. hence none of the original 
objectives were accomplished. 

Also appended to this report is an updated user manual containing user information, as well as an 
interpolation and source sensitivity analysis. 
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Abstract 

This report contains updated user information for the program SSP. This program is an 

implementation of the Pade series approximation for parabolic equations modeling one-way 

scalar 2-D electromagnetic propagation. The code can be run on PC's with Pentium processors. 

The current program is set for 20,000 notch points in height and NPADE < 8. The code is 

written in generic FORTRAN and has been compiled using Microsoft-FORTRAN Powerstation. 

The accompanying CD contains*source and executable codes for SSP as well as EPADE, the 

code responsible for calculating the Pade coefficients. Also on the CD is a graphics program 

GRAPH1 and SSPPREP an input file preparation program dsigned to make setting up input 

files more user friendly. GRAPH   is a screen graphic contour programs for displaying results 

immediately. This program is written in C and source codes are also included. 



I. Program Description 

Under certain simplifying assumptions one may reduce the solution of the full 3-D 

vector electromagnetic propagation problem to that of two simpler scalar models. These 

problems correspond to horizontally or vertically polarized wave fields. A full discussion 

of the analysis and derivations leading to such equations is given in References 1 and 2. 

The primary assumption leading to this reduction or splitting of the vector problem into 

scalar pieces is medium symmetry in at least one coordinate direction. The reader is 

referred to Ref. 1 before reading this report. We will assume that the user is familiar with 

that report and the notations and descriptions contained therein. The program SSP is the 

numerical implementation of the results ofthat report. It is a finite difference approach for 

solving parabolic equations modeling scalar EM propagation. 

The program SSP consists of a main routine which calls a total of 13 other 

subroutines or functions. The subroutine hierarchy is illustrated in Figure 1. Subroutine 

Descriptions are as follows: 

INPUT This subroutine is responsible for reading in all input parameters other than 

field profiles. This input resides in the first 7 lines of the file SSP.IN, and 

the next n lines determining the terrain elevation. If the user requests an 

absorbing layer, INPUT calls the subroutine SPONGE, and uses the 

function CRVCORR. 

CRVCORR   This function is used in implementing the curvature correction when using 

the Earth-Flattening transformation. 

PROFL Responsible for input of all profile data which resides in the lines following 

the topography input. PROFL calls the subroutine READQ. 

READQ Responsible for reading in medium profiles and interpolating the profiles 

over the entire height grid. 

CC Responsible for computing the width of the artificial absorbing layer at the 

top of the atmosphere. For a given frequency, using tabular data, absorbing 

layer widths are interpolated and passed back to INPUT. 



GREEN Creates a Green's function starting field. It uses the function 

FGS(ARG) = exp( -ARG / 4) 

MODES        Creates a Homogeneous Normal Mode Starting Field. This is a nice startup 

field because at allows limitation of the aperture using THMAX. 

GAUSS Creates the typical Gaussian Starting field. It uses the function 

FGR(ARG) = (1.4467 - 0.4201 *ARG)*exp( -ARG / 3.0512) 

MATRC        This subroutine sets up the matrices used in solving the linear system 

associated with the Pade discretization of the Parabolic Equation. 

UPDAT This subroutine is used to update the matrices whenever there is a change in 

the bottom topography. 

SOLVE This subroutine solves the tridiagonal system of equations associated with 

the discretization.   This subroutine is called every time a step in range is 

taken. 

The program flow is quite simple. For a given medium, the basic flow is a loop in 

range in which the solution of a tridiagonal matrix problem is calculated. After each step, 

receiver loss values are interpolated and then written to a file. The matrices involved in the 

linear system are composed of tridiagonal entries dependent upon grid width, dz, medium 

parameters, such as refraction and conductivity, as well as interface coupling. Each time 

any one of these parameters changes the matrices must be re-computed. The two 

subroutines MATRC and UPDAT are responsible for setting up these matrices. The 

subroutine MATRC is used whenever there is a new set of profiles in the input run-stream. 

For terrain elevation changes UPDAT is used. The subroutines UPDAT and MATRC do 

exactly the same thing however when there is only a change in terrain elevation, and not 

refraction, one need only re-compute the matrix elements for a small sub-set of equations 

in the entire linear system. The program runs far more efficiently using UPDAT. Running 

the code using MATRC alone is possible, and in fact is a good check if adapting this code 

in that area. 

A general flow of the program is given in Figure 2. This is only a rough outline of 

the code to give the reader a feel for the program. 



SSP PROGRAM STRUCTURE 

Input Subroutines 

MAIN 

—►.— 

INPUT PROFL 

CRVCORR cc READQ 

MATRC UPDAT 

Matrix Calculation 
Subroutines 

SOLVE 

Range Stepping 
Subroutine 

GREEN MODES GAUSS 

Starting Field Subroutines 

FGR FGS 

Figure 1 



SSP Flow Chart 

Start 

Open Files 
SSP.IN, SSP1.0UT 

SSP2.0UT, TRNPRF.OUT 
PROFLOUT 

' ' 

\        E 

\w              1 
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?      yS 

Call CC r 0 

' ' 
Open File 

EPADE.DAT 

1 ' 
/        Read 

NPADE.DR 
PD1(J), PD2(J) 

i 

cont. 

Figure 2 



Is ISTRT .EQ. 1 ? > Yes—► Call GAUSS 

Is ISTRT .EQ. 2 ? > Yes—► Call GREEN 

w                                                ► Call MODES 

1 

' ' 

Call MATRC 

■ ' 

cont. 

Figure 2 cont. 



Call SOLVE * 

Calculate and Write 
Transmission Loss 

Values 

Yes » Call UPDAT 

Call PROFL 

.  ' ' 

rail MATRC 

Figure 2 cont. 



II. Input Run-Stream 

The input for the program comes from two files. The first file EPADE.DAT must be 

produced by using the program EPADE. This program automatically reads physical 

information from the primary input file, SSP.IN, and produces EPADE.DAT containing 

the Pade coefficients. The input file SSP.IN is where the user specifies all the information 

pertaining to source and receiver configurations as well as the medium topography and 

refraction profiles. The disk containing the source and executable codes also has a 

directory with some sample input files. It is recommended that a user first become familiar 

with those files and modify them for their own use. 

The input in the file SSP.IN is grouped into three sections. The first section, which is 

contained in the first seven lines of the file, is where the source and receiver configuration 

is specified. Output options are also specified there along with parameters needed for the 

screen graphics post-processing program GRAPH.    The next section is the terrain profile. 

The remaining section itself consists of sub-sections. The medium dielectric and 

conductive properties are entered as a series of range-independent sets of profiles. That is 

at specified ranges, height dependent profiles are entered. There is no interpolation in 

range. The medium is assumed vertically stratified until the following range with changes 

is reached. A complete description of the input records with associated definitions is given 

in the following pages. The next section contains some example input run-streams and 

their associated output. 



************ 

CARD1 
************ 

TITLE 

************ 

CARD 2 
idckifffkifkit^k-k-k 

Input Run-Stream 

TITLE:      Title for Input Data and Graphics Plot. After the Title (20 Characters) 

one should type the word "TITLE", i.e. in columns 21-25. This is 

necessary for the post-processing graphics program, GRAPH. 

FREQ, ZS, ZR, POLFLG, ABSRBFLG 

FREQ:      Source Frequency in MHz. 

ZS:      Source Height (above MSL) in meters. 

ZR:      Receiver Height (above MSL) in meters. 

POLFLG:      Polarization Flag ( POLFLG=0 for Horizontal Polarization POLFLG=l 

for Vertical Polarization) 

ABSRBFLG: Atmospheric Absorbing layer Fiag (ABSRBFLG=1 will extend the 

atmosphere by trje amount WIL»TH as computed by the subroutine CC.) 

************ 

CARD 3 
************ 

RMAX, DR, NDR 

RMAX 
DR 

NDR 

Maximum Range for Calculations in kilometers. 

Computational range step in meters. 

Number of notch point skips in range in writing entire field. 

10 



************ 

CARD 4 
************ 

HMAX1, HMAX2, DZ, NDZ, ZTPLT, ZBPLT 

HMAX1 

HMAX2 

DZ 

NDZ 

ZTPLT 

ZBPLT 

Maximum height of Atmosphere in meters. 

Maximum Depth of Terrain in meters. 

Computational height step in meters. 
Number of notch point skips in height in writing entire field. 

Used for contour plot. Top of the graph in meters 

Used for contour plot. Bottom of the graph in meters 

NOTE: All heights are measured relative to MSL (z=0).HMAX2 gives the 

elevation of the bottom of the calculational domain. (Usually negative) 

************ 

CARD 5 
************ 

GL(i) i=l,13 

GL(I): These are contour level values (positive) for use by the post processi*^ 

program GRAPH, which produces screen-graphic contour plots of loss 

values 

************ 

CARD 6 
************ 

NPADE,(IFLAG(I),I=1,4) 

NPADE:      The number of terms in the Pade approximation series. 

IFLAG( 1):     Write Flag for the output file PROFL.OUT. This file contains 

interpolated input profiles. IFLAG(l) = 1 turns the write statements on. 

11 



IFLAG(2):     Write Flag for the output file TRNPRF.OUT which contains 

interpolated terrain profile heights. IFLAG(2) = 1 turns the write 

statements on. 

IFLAG(3);     Write Flag for the output file SSP1 .OUT. IFLAG(3) = 1 turns the write 

statements on. If using the graphics program GRAPH this must be set 

equal to 1. 

IFLAG(4):     Output option flag for artificially setting loss values = 500 dB for 

receiver locations below the terrain. This will make for more distinct 

graphics output when using the post-proccessing program GRAPH. 

IFLAG(4)=1 causes 500 dB substitution. If choosing this option, it is 

best to pick GL(13) = 499. 

************ 

CARD 7 
************ 

ISTRT, THMAX 

ISTRT:      Startirg field type flag 

= 1 gives a Gaussian starting field. 

= 2 gives a Green's function staring field. 

= 3 gives a Normal Mode starting field using a point omni-directional 

point source. Aperture is limited by THMAX 

THMAX:      Maximum angle for mode starting field. Useful in limiting the source 

aperture. Used only inISTRT=3. 

12 



************** 

CARD 8+    Terrain Elevation Data Input (< 500 data points) 
************** 

RD(1),D(1) 

RD(2),D(2) 

Range RD in kilometers and elevation D in meters. 

RD(N1),D(N1) 

*************** 

CARD 8+N1      Atmospheric N Profile. 
*************** 

Z(l), CW(1) 

Z(2), CW(2) 
Height Z in meters. 

Refraction CW in N-units. 

NOTE: Z(i) must be less than Z(i+1). 

Z(N2), CW(N2) 

******************* 

CARD 8+N1+N2   Terrain Dielectric Input Profile. 
******************* 

Z(l), CB(1) 

Z(2),CB(2) 

Height Z in meters. 

Relative Permittivity CB. 

NOTE: Z(i)<Z(i+l). 

Z(N3), CB(N3) 

13 



********************** 

CARD 8+N1+N2+N3 Terrain Conductivity Input Profile. 
********************** 

Z(l), COND(l) 

Z(2), COND(2) 

Height Z in meters 

Conductivity COND in MHO/m 

NOTE: Z(i) must be less than Z(i+1). 

Z(N4), COND(N4) 

************************** 

CARD 7+N1+N2+N3+N4 
************************** 

RP 

RP:      Range in kilometers of the next profile. 

************************** 

CARDS 7+N1+N2+N3+N4++ 
************************** 

Repeat the previous three sections for each range profile. 

Once an input file has been set up, the user then runs the program EPADE. This 

program automatically reads the input data DR, FREQ, and NPADE, from the file SSP.IN 

and then produces a file called EPADE.DAT which contains the complex series 

coefficients. This file is then read by the program SSP. The program EPADE is a 

modification of one written by Dr. Michael Collins. A description of the numerical 

methods used in that program can be found in Ref. 3. You will get a message from 

EPADE if the code does not converge. If this is the case you must either decrease the 

range step-size DR, or increase the number of terms in the series, NPADE. 

14 



Program SSPREP 

I have written a precursor program called SSPPREP which is designed to create 

input files for the novice user. It prompts the user for all physical information, such as 

source and receiver configuration, terrain elevation, and atmospheric makeup, and then 

creates an input file called SSP.IN in the format appropriate for the code SSP. 

The code SSPPREP allows for terrain following refractive profiles. I put this in 

since there is some data available that suggests that near coastal regions, atmospheric 

refraction profiles may tend to slope up with the land as the terrain rises. Terrain 

topography can be input as (xy) data pairs (typical), or as a sinusoidal model with user 

specified amplitude and period. Both the input files used in samples 1 and 3 were created 

using SSPPREP. 

If you use SSPPREP the input file that is created should have parameter values that 

should yield convergent solutions. There is a possibility of the code crashing if the 

parameters ZTPLT and ZBPLT are not chosen correctly. 

III. Output Options 

There are several output options for the code. Primary output is in the two files 

SSP LOUT and SSP2.0UT. For a requested receiver height, SSP2.0UT contains the loss 

values at each ra~ge step between r = 0 and r = RMAX. The file SSP LOUT is a binary 

file used by the program GRAPH. It contains field loss values on a grid specified by the 

user in Card 4 through parameters ZTPLT and ZBPLT. These are the elevations of the top 

and bottom, respectively, of the graph. NDR and NDZ give the output steps. Currently the 

graphics programs accept grid sizes with the total number of range points between 250 and 

1000, and the total number of height points between 125 and 500. If the user requests too 

many height output points the program will automatically change NDZ to accommodate 

the output. Range steps NDR must be correctly entered by the user however, if the 

graphics program is used. Choose NDR so that RMAX/(NDR*DR) is between 250 and 

1000, where RMAX is measured in meters. I wished the output to this file to be as general 

as possible for other uses. This is why NDR and NDZ were not hard coded. 

15 



For debugging purposes, it was also nice to have the interpolated medium refraction 

values for the entire height array. By choosing IFLAG(l) = 1, one obtains these values in 

the file PROFL.OUT. Interpolated terrain elevation may also be obtained in the file 

TRNPRF.OUT if one chooses the option IFLAG(2) = 1. I left this option in for future 

graphics programs. Currently, the screen-graphics program GRAPH creates contour plots 

and by using the option IFLAG(4) = 1, all points below the terrain are given values of 500 

dB losses. This way by specifying GL(13) = 499, one obtains clear graphical depiction of 

the ground. Future codes will show true losses and use TRNPRF.OUT to drawn in the 

Earth's terrain elevation. 

16 



IV Sample Input Files 

The following two tables contain samples of input files used to produce Figures 3 and 4. 

Table 1 gives the input file for Example 1, and Table 2 gives the input file for Example 2. The 

input files can be found on the program CD. 

Table 1: Example 1 Input File 

Lloyds Mirror TITLE 
4.9965    75.00    75.00 0 0       FREQ ZS ZR POLFLG ABSRBFLG 
4.000     2.000    4 RMAXDRNDR 

100.00-100.00   .500   1   100.00 -100.00 HMAX IHM AX2 DZ NDZ TPLT BPLT 
30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 
40110 NPADE(IFLAG(I),I=1,4) 

3 89.50 ISTRT THMAX 
.0000 .0000 RD(i) d(i)   Terrain Data Point 

-999 -999 
.0000 .0000 z(i)    N(i) 

-999 -999 
.0000 1.0000 z(i)   EPS(i) 

-999 -999 
.0000 .0000 z(i) SIGMA(i) 

-999 -999 

Ü 

-30 

-40 

-50 

-60 

-70 

-80 

Example 1 Output 

Range (km) 

Figure 3 
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Table 2: Example 2 Input File 
Sinusoidal Terrain TITLE 

25.0000   250.00   250.00 11       FREQ ZS ZR POLFLG ABSRBFLG 
50.000     5.000    10 RMAXDRNDR 

1200.00-500.00   .999   6 1200.00 -200.00 HMAX1 HMAX2 DZNDZ TPLT BPLT 
60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 110.0 120.0 499.0 
4 0 0 11 NPADE (IFLAG(I),I= 1,4) 

1    .00 ISTRT THMAX 
.0000     .0000 RD(i) d(i)  Terrain Data Point 
.5000   61.8034 RD(i) d(i)  Terrain Data Point 
1.0000   117.5571 RD(i) d(i)   Terrain Data Point 
1.5000   161.8034 RD(i) d(i)   Terrain Data Point 
2.0000   190.2113 RD(i) d(i)   Terrain Data Point 
2.5000   200.0000 RD(i) d(i)   Terrain Data Point 
3.0000   190.2113 RD(i) d(i)  Terrain Data Point 
3.5000   161.8034 RD(i) d(i)  Terrain Data Point 
4.0000   117.5570 RD(i) d(i)   Terrain Data Point 
4.5000    61.8034 RD(i) d(i)   Terrain Data Point 
5.0000      .0000 RD(i) d(i)   Terrain Data Point 
5.5000   -61.8034 RD(i) d(i)   Terrain Data Point 
6.0000-117.5571 RD(i) d(i)   Terrain Data Point 
6.5000-161.8034 RD(i) d(i)   Terrain Data Point 
7.0000-190.2113 RD(i) d(i)   Terrain Data Point 
7.5000 -200.0000 RD(i) d(i)   Terrain Data Point 
8.0000-190.2113 RD(i) d(i)   Terrain Data Point 
8.5000-161.8034 RD(i) d(i)   Terrain Data Point 
9.0000-117.5570 RD(i) d(i)   Terrain Data Point 
9.5000   -61.8034 RD(i) d(i)   Terrain Data Point 
10.0000      .0000 RD(i) d(i)   Terrain Data Point 
10.5000    61.8034 RD(i) d(i)   Terrain Data Point 
11.0000   117.5571 RD(i) d(i)   Terrain Data Point 
11.5000   161.8034 RD(i) d(i)   Terrain Data Point 
12.0000   190.2113 RD(i) d(i)  Terrain Data Point 
12.5000   200.0000 RD(i) d(i)   Terrain Data Point 
13.0000   190.2113 RD(i) d(i)   Terrain Data Point 
13.5000   161.8034 RD(i) d(i)   Terrain Data Point 
14.0000   117.5570 RD(i) d(i)   Terrain Data Point 
14.5000    61.8034 RD(i) d(i)   Terrain Data Point 
15.0000    -.0001 RD(i) d(i)   Terrain Data Point 
15.5000   -61.8035 RD(i) d(i)  Terrain Data Point 
16.0000-117.5571 RD(i) d(i)  Terrain Data Point 
16.5000-161.8034 RD(i) d(i)  Terrain Data Point 
17.0000-190.2113 RD(i) d(i)   Terrain Data Point 
17.5000-200.0000 RD(i) d(i)   Terrain Data Point 
18.0000-190.2113 RD(i) d(i)  Terrain Data Point 
18.5000-161.8034 RD(i) d(i)  Terrain Data Point 
19.0000-117.5570 RD(i) d(i)  Terrain Data Point 
19.5000  -61.8033 RD(i) d(i)  Terrain Data Point 
20.0000     .0001 RD(i) d(i)  Terrain Data Point 
20.5000   61.8035 RD(i) d(i)  Terrain Data Point 
21.0000   117.5571 RD(i) d(i)  Terrain Data Point 
21.5000   161.8034 RD(i) d(i)  Terrain Data Point 
22.0000   190.2113 RD(i) d(i)  Terrain Data Point 
22.5000  200.0000 RD(i) d(i)  Terrain Data Point 
23.0000   190.2113 RD(i) d(i)  Terrain Data Point 
23.5000   161.8033 RD(i) d(i)  Terrain Data Point 
24.0000   117.5570 RD(i) d(i)  Terrain Data Point 
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24.5000    61.8033 RD(i) d(i)   Terrain Data Point 
25.0000    -.0001 RD(i) d(i)  Terrain Data Point 
25.5000   -61.8035 RD(i) d(i)   Terrain Data Point 
26.0000 -117.5571 RD(i) d(i)  Terrain Data Point 
26.5000 -161.8035 RD(i) d(i)  Terrain Data Point 
27.0000-190.2113 RD(i) d(i)  Terrain Data Point 
27.5000 -200.0000 RD(i) d(i)  Terrain Data Point 
28.0000-190.2113 RD(i) d(i)  Terrain Data Point 
28.5000-161.8033 RD(i) d(i)  Terrain Data Point 
29.0000-117.5570 RD(i) d(i)   Terrain Data Point 
29.5000   -61.8033 RD(i) d(i)   Terrain Data Point 
30.0000      .0001 RD(i) d(i)   Terrain Data Point 
30.5000   61.8034 RD(i) d(i)  Terrain Data Point 
31.0000   117.5571 RD(i) d(i)   Terrain Data Point 
31.5000   161.8034 RD(i) d(i)   Terrain Data Point 
32.0000   190.2113 RD(i) d(i)  Terrain Data Point 
32.5000  200.0000 RD(i) d(i)  Terrain Data Point 
33.0000   190.2113 RD(i) d(i)  Terrain Data Point 
33.5000   161.8034 RD(i) d(i)   Terrain Data Point 
34.0000   117.5570 RD(i) d(i)   Terrain Data Point 
34.5000    61.8034 RD(i) d(i)   Terrain Data Point 
35.0000      .0000 RD(i) d(i)   Terrain Data Point 
35.5000   -61.8034 RD(i) d(i)   Terrain Data Point 
36.0000-117.5571 RD(i) d(i)   Terrain Data Point 
36.5000-161.8034 RD(i) d(i)   Terrain Data Point 
37.0000 -190.2113 RD(i) d(i)   Terrain Data Point 
37.5000-200.0000 RD(i) d(i)   Terrain Data Point 
38.0000-190.2113 RD(i) d(i)   Terrain Data Point 
38.5000-161.8034 RD(i) d(i)   Terrain Data Point 
39.0000 -117.5570 RD(i) d(i)   Terrain Data Point 
39.5000   -61.8034 RD(i) d(i)   Terrain Data Point 
40.0000      .0000 RD(i) d(i)   Terrain Data Point 
40.5000   61.8034 RD(i) d(i)   Terrain Data Point 
41.0000   117.5571 RD(i) d(i)   Terrain Data Point 
41.5000   161.8034 RD(i) d(i)   Terrain Data Point 
42.0000   190.2113 RD(i) d(i)   Terrain Data Point 
42.5000   200.0000 RD(i) d(i)   Terrain Data Point 
43.0000   190.2113 RD(i) d(i)   Terrain Data Point 
43.5000   161.8034 RD(i) d(i)  Terrain Data Point 
44.0000   117.5570 RD(i) d(i)   Terrain Data Point 
44.5000   61.8034 RD(i) d(i)   Terrain Data Point 
45.0000    -.0001 RD(i) d(i)   Terrain Data Point 
45.5000  -61.8035 RD(i) d(i)  Terrain Data Point 
46.0000-117.5571 RD(i) d(i)   Terrain Data Point 
46.5000-161.8034 RD(i) d(i)   Terrain Data Point 
47.0000-190.2113 RD(i) d(i)   Terrain Data Point 
47.5000 -200.0000 RD(i) d(i)  Terrain Data Point 
48.0000-190.2113 RD(i) d(i)   Terrain Data Point 
48.5000-161.8034 RD(i) d(i)  Terrain Data Point 
49.0000-117.5570 RD(i) d(i)  Terrain Data Point 
49.5000  -61.8033 RD(i) d(i)  Terrain Data Point 
50.0000     .0001 RD(i) d(i)  Terrain Data Point 
-999      -999 
.0000  376.0000 z(i)   N(i) 

200.0000  300.0000 z(i)   N(i) 
500.0000  200.0000 z(i)   N(i) 

-999      -999 
.0000    5.0000 z(i)  EPS(i) 
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-999      -999 
-500.0000  .0100 z(i) SIGMA(i) 
-450.0000  .0010 z(i) SIGMA(i) 
-400.0000  .0001 z(i) SIGMA(i) 

.0000  .0001 z(i) SIGMA(i) 
-999  -999 
5.000000E-01 
61.8034 376.0000 z(i) N(i) 
261.8034 300.0000 z(i) N(i) 
561.8034 200.0000 z(0 N(i) 
-999  -999 
61.8034  5.0000 z(i) EPS(i) 
-999  -999 

-438.1966  .0100 z(i) SIGMA(i) 
-388.1966  .0010 z(i) SIGMA(i) 
-338.1966  .0001 z(i) SIGMA(i) 
61.8034  .0001 z(i) SIGMA(i) 
-999  -999 
1.000000 

117.5571 376.0000 z(i) N(i) 
317.5571 300.0000 z(i) N(i) 
617.5571 200.0000 z(i) N(i) 
-999  -999 
117.5571  5.0000 z(i) EPS(i) 
-999  -999 

-382.4429  .0100 z(i) SIGMA(i) 
-332.4429  .0010 z(i) SIGMA(i) 
-282.4429  .0001 z(i) SIGMA(i) 
117.5571  .0001 z(i) SIGMA(i) 
-999  -999 
1.500000 

161.8034 376.0000 z(i) N(i) 
361.8034 300.0000 z(i) N(i) 
661.8034 200.0000 z(i) N(i) 
-999  -999 
161.8034  5.0000 z(i) EPS(i) 
-999  -999 

-338.1966  .0100 z(i) SIGMA(i) 
-288.1966  .0010 z(i) SIGMA(i) 
-238.1966  .0001 z(i) SIGMA(i) 
161.8034  .0001 z(i) SIGMA(i) 
-999  -999 
2.000000 

190.2113 376.0000 z(i) N(i) 
390.2113 300.0000 z(i) N(i) 
690.2113 200.0000 z(i) N(i) 
-999  -999 
190.2113  5.0000 z(i) EPS(i) 
-999  -999 

-309.7887  .0100 z(i) SIGMA(i) 
-259.7887  .0010 z(i) SIGMA(i) 
-209.7887  .0001 z(i) SIGMA(i) 
190.2113  .0001 z(i) SIGMA(i) 
-999  -999 
2.500000 

200.0000 376.0000 z(i) N(i) 
400.0000 300.0000 z(i) N(i) 
700.0000 200.0000 z(i) N(i) 
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-999 -999 
200.0000 5.0000 
-999 -999 

-300.0000 .0100 
-250.0000 .0010 
-200.0000 .0001 
200.0000 .0001 
-999 -999 
3.000000 

190.2113 376.0000 
390.2113 300.0000 
690.2113 200.0000 
-999 -999 
190.2113 5.0000 
-999 -999 

-309.7887 .0100 
-259.7887 .0010 
-209.7887 .0001 
190.2113 .0001 
-999 -999 
3.500000 

161.8034 376.0000 
361.8034 300.0000 
661.8034 200.0000 
-999 -999 
161.8034 5.0000 
-999 -999 

-338.1966 .0100 
-288.1966 .0010 
-238.1966 .0001 
161.8034 .0001 
-999 -999 
4.000000 

117.5570 376.0000 
317.5570 300.0000 
617.5570 200.0000 
-999 -999 
117.5570 5.0000 
-999 -999 

-382.4430 .0100 
-332.4430 .0010 
-282.4430 .0001 
117.5570 .0001 
-999 -999 
4.500000 

61.8034 376.0000 
261.8034 300.0000 
561.8034 200.0000 
-999 -999 
61.8034 5.0000 
-999 -999 

-438.1966 .0100 
-388.1966 .0010 
-338.1966 .0001 
61.8034 .0001 
-999 -999 
5.000000 

.0000 376.0000 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(0 N(i) 
z(i) N(i) 
z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) SIGMA(i) 

z(i)   N(i) 
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200.0000 300.0000 z(i) N(i) 
500.0000 200.0000 z(i) N(i) 
-999  -999 
.0000  5.0000 z(i) EPS(i) 
-999  -999 

-500.0000  .0100 z(i) SIGMA(i) 
-450.0000  .0010 z(i) SIGMA(i) 
-400.0000  .0001 z(i) SlGMA(i) 

.0000  .0001 z(i) SIGMA(i) 
-999  -999 
5.500000 

-61.8034 376.0000 z(i) N(i) 
138.1966 300.0000 z(i) N(i) 
438.1966 200.0000 z(i) N(i) 
-999  -999 

-61.8034  5.0000 z(i) EPS(i) 
-999  -999 

-561.8034  .0100 z(i) SIGMA(i) 
-511.8034  .0010 z(i) SIGMA(i) 
-461.8034  .0001 z(i) SIGMA(i) 
-61.8034  .0001 z(i) SIGMA(i) 
-999  -999 
6.000000 

-117.5571 376.0000 z(i) N(i) 
82.4429 300.0000 z(0 N(i) 
382.4429 200.0000 z(i) N(i) 
-999  -999 

-117.5571  5.0000 z(i) EPS(i) 
-999  -999 

-617.5571  .0100 z(i) SIGMA(i) 
-567.5571  .0010 z(i) SIGMA(i) 
-517.5571  .0001 z(i) SIGMA(i) 
-117.5571  .0001 z(i) SIGMA(i) 
-999  -999 
6.500000 

-161.8034 376.0000 z(i) N(i) 
38.1966 300.0000 z(i) N(i) 
338.1966 200.0000 z(i) N(i) 
-999  -999 

-161.8034 5.0000 z(i) EPS(i) 
-999  -999 

-661.8034  .0100 z(i) SIGMA(i) 
-611.8034  .0010 z(i) SIGMA(i) 
-561.8034  .0001 z(i) SIGMA(i) 
-161.8034  .0001 z(i) SIGMA(i) 
-999  -999 
7.000000 

-190.2113 376.0000 z(i) N(i) 
9.7887 300.0000 z(i) N(i) 

309.7887 200.0000 z(i) N(i) 
-999  -999 

-190.2113 5.0000 z(i) EPS(i) 
-999  -999 

-690.2113  .0100 z(i) SIGMA(i) 
-640.2113  .0010 z(i) SIGMA(i) 
-590.2113  .0001 z(i) SIGMA(i) 
-190.2113  .0001 z(i) SIGMA(i) 
-999  -999 
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7.500000 
-200.0000 376.0000 

.0000 300.0000 
300.0000 200.0000 
-999  -999 

-200.0000 5.0000 
-999  -999 

-700.0000  .0100 
-650.0000  .0010 
-600.0000  .0001 
-200.0000  .0001 
-999  -999 
8.000000 

-190.2113 376.0000 
9.7887 300.0000 

309.7887 200.0000 
-999  -999 

-190.2113  5.0000 
-999  -999 

-690.2113  .0100 
-640.2113  .0010 
-590.2113  .0001 
-190.2113  .0001 
-999  -999 
8.500000 

-161.8034 376.0000 
38.1966 300.0000 
338.1966 200.0000 
-999  -999 

-161.8034  5.0000 
-999  -999 

-661.8033  .0100 
-611.8033  .0010 
-561.8033  .0001 
-161.8034  .0001 
,-999  -999 

9.000000 
-117.5570 376.0000 
82.4430 300.0000 
382.4430 200.0000 
-999  -999 

-117.5570  5.0000 
-999  -999 

-617.5570  .0100 
-567.5570  .0010 
-517.5570  .0001 
-117.5570  .0001 
-999  -999 
9.500000 

-61.8034 376.0000 
138.1966 300.0000 
438.1966 200.0000 
-999  -999 

-61.8034  5.0000 
-999  -999 

-561.8033  .0100 
-511.8034  .0010 
-461.8034  .0001 

z(i) N(i) 
z(i) N(i) 

z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SlGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z<i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
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-61.8034  .0001 
-999  -999 
10.000000 
.0000 376.0000 

200.0000 300.0000 
500.0000 200.0000 
-999  -999 
.0000  5.0000 
-999  -999 

-500.0000  .0100 
-450.0000  .0010 
-4UÜ.0000  .0001 

.0000  .0001 
-999  -999 
10.500000 

61.8034 376.0000 
261.8034 300.0000 
561.8034 200.0000 
-999  -999 
61.8034  5.0000 
-999  -999 

-438.1966  .0100 
-388.1966  .0010 
-338.1966  .0001 
61.8034  .0001 
-999  -999 
11.000000 

117.5571 376.0000 
317.5571 300.0000 
617.5571 200.0000 
-999  -999 
117.5571  5.0000 
-999  -999 

-382.4429  .0100 
-332.4429  .0010 
-282.4129  .0001 
i: 7.5571  .0001 
-9Sy  -999 
11.500000 

161.8034 376.0000 
361.8034 300.0000 
661.8034 200.0000 
-999  -999 
161.8034  5.0000 
-999  -999 

-338.1966  .0100 
-288.1966  .0010 
-238.1966  .0001 
161.8034  .0001 
-999  -999 
12.000000 

190.2113 376.0000 
390.2113 300.0000 
690.2113 200.0000 
-999  -999 
190.2113 5.0000 
-999  -999 

-309.7887  .0100 

z(i) SIGMA(i) 

z(i) N(i) 
z(0 N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SlGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
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-259.7887  .0010 
-209.7887  .0001 
190.2113  .0001 
-999  -999 
12.500000 

200.0000 376.0000 
400.0000 300.0000 
700.0000 200.0000 
-999  -999 

200.0000  5.0000 
-999 -999 

-300.0000 .0100 
-250.0000 .0010 
-200.0000 .0001 
200.0000 .0001 
-999  -999 
13.000000 

190.2113 376.0000 
390.2113 300.0000 
690.2113 200.0000 
-999  -999 
190.2113  5.0000 
-999  -999 

-309.7887  .0100 
-259.7887  .0010 
-209.7887  .0001 
190.2113  .0001 
-999  -999 
13.500000 

161.8034 376.0000 
361.8034 300.0000 
661.8033 200.0000 
-999  -999 
161.8034 5.0000 
-999  -999 

-338.1966  .0100 
-288.1966  .0010 
-238.1966  .0001 
161.8034  .0001 
-999  -999 
14.0000QO 

117.5570 376.0000 
317.5570 300.0000 
617.5570 200.0000 
-999  -999 
117.5570 5.0000 
-999  -999 

-382.4430  .0100 
-332.4430  .0010 
-282.4430  .0001 
117.5570  .0001 
-999  -999 
14.500000 

61.8034 376.0000 
261.8033 300.0000 
561.8033 200.0000 
-999  -999 
61.8034 5.0000 

z(i) SIGMA(i) 
z(i) SlGMA(i) 
z(i) SIGMA(i) 

z(0 N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
• z(i) N(i) 

z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SlGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 
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-999  -999 
-438.1967  .0100 
-388.1967  .0010 
-338.1967  .0001 
61.8034  .0001 
-999  -999 
15.000000 

-.0001 376.0000 
200.0000 300.0000 
499.9999 200.0000 
-999  -999 
-.0001  5.0000 
-999  -999 

-500.0001  .0100 
-450.0001  .0010 
-400.0001  .0001 
-.0001  .0001 
-999  -999 
15.500000 

-61.8035 376.0000 
138.1965 300.0000 
438.1965 200.0000 
-999  -999 

-61.8035  5.0000 
-999  -999 

-561.8035  .0100 
-511.8035  .0010 
-461.8035  .0001 
-61.8035  .0001 
-999  -999 
16.000000 

-117.5571 376.0000 
82.4429 300.0000 
382.4429 200.0000 
-999  -999 

-117.5571  5.0000 
-999  -999 

-617.5571  .0100 
-567.5571  .0010 
-517.5571  .0001 
-117.5571  .0001 
-999  -999 
16.500000 

-161.8034 376.0000 
38.1966 300.0000 
338.1966 200.0000 
-999  -999 

-161.8034  5.0000 
-999  -999 

-661.8035  .0100 
-611.8035  .0010 
-561.8035  .0001 
-161.8034  .0001 
-999  -999 
17.000000 

-190.2113 376.0000 
9.7887 300.0000 

309.7887 200.0000 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(0 N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 

z(i) EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i) N(i) 
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-999 -999 
-190.2113 5.0000 
-999 -999 

-690.2113 .0100 
-640.2113 .0010 
-590.2113 .0001 
-190.2113 .0001 
-999 -999 
17.500000 

-200.0000 376.0000 
.0000 300.0000 

300.0000 200.0000 
-999 -999 

-200.0000 5.0000 
-999 -999 

-700.0000 .0100 
-650.0000 .0010 
-600.0000 .0001 
-200.0000 .0001 
-999 -999 
18.000000 

-190.2113 376.0000 
9.7887 300.0000 

309.7887 200.0000 
-999 -999 

-190.2113 5.0000 
-999 -999 

-690.2113 .0100 
-640.2113 .0010 
-590.2113 .0001 
-190.2113 .0001 
-999 -999 
18.500000 

-161.8034 376.0000 
38.1966 300.0000 
338.1967 200.0000 
-999 -999 

-161.8034 5.0000 
-999 -999 

-661.8033 .0100 
-611.8033 .0010 
-561.8033 .0001 
-161.8034 .0001 
-999 -999 
19.000000 

-117.5570 376.0000 
82.4430 300.0000 
382.4430 200.0000 
-999 -999 

-117.5570 5.0000 
-999 -999 

-617.5570 .0100 
-567.5570 .0010 
-517.5570 .0001 
-117.5570 .0001 
-999 -999 
19.500000 

-61.8033 376.0000 

z(i)   EPS(i) 

z(i) SlGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i)   N(i) 
z(i)   N(i) 

z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i)   N(i) 
z(i)   N(i) 

z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i)    N(i) 
z(i)    N(i) 
z(i)    N(i) 

z(i)   EPS(i) 

z(i) SlGMA(i) 
z(i) SlGMA(i) 
z(i) SlGMA(i) 
z(i) SIGMA(i) 

z(i)   N(i) 
z(i)    N(i) 
z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i)   N(i) 
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138.1967 300.0000 

438.1967 200.0000 
-999 -999 

-61.8033 5.0000 
-999 -999 

-561.8033 .0100 
-511.8033 .0010 

-461.8033 .0001 
-61.8033 .0001 

-999 -999 
20.000000 
.0001 376.0000 

200.0001 300.0000 
500.0001 200.0000 
-999 -999 
.0001 5.0000 
-999 -999 

-499.9999 .0100 
-449.9999 .0010 
-399.9999 .0001 

.0001 .0001 
-999 -999 
20.500000 

61.8035 376.0000 
261.8035 300.0000 
561.8035 200.0000 
-999 -999 
61.8035 5.0000 
-999 -999 

-438.1965 .0100 
-388.1965 .0010 
-338.1965 .0001 
61.8035 .0001 
-999 -999 
21.001)000 

117.5571 376.0000 
317.5571 300.0000 
617.5571 200.0000 
-999 -999 
117.5571 5.0000 
-999 -999 

-382.4429 .0100 
-332.4429 .0010 
-282.4429 .0001 
117.5571 .0001 
-999 -999 
21.500000 

161.8034 376.0000 
361.8034 300.0000 
661.8035 200.0000 
-999 -999 
161.8034 5.0000 
-999 -999 

-338.1966 .0100 
-288.1966 .0010 
-238.1966 .0001 
161.8034 .0001 
-999 -999 

z(i) 
z(i) 

N(i) 
N(i) 

z(i)  EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) SIGMA(i) 

z(i)    N(i) 
z(i)   N(i) 
z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i)   N(i) 

z(i)   EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i)   N(i) 

z(i)  EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 

z(i) N(i) 
z(i) N(i) 
z(i)   N(i) 

z(i)  EPS(i) 

z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
z(i) SIGMA(i) 
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22.000000 
190.2113 376.0000 z(i) N(i) 
390.2113 300.0000 z(i) N(i) 
690.2113 200.0000 z(0 N(i) 
-999  -999 
190.2113  5.0000 z(i) EPS(i) 
-999  -999 

-309.7887  .0100 z(i) SIGMA(i) 
-259.7887  .0010 z(i) SIGMA(i) 
-209.7887  .0001 z(i) SIGMA(i) 
190.2113  .0001 z(i) SIGMA(i) 
-999  -999 
22.500000 

200.0000 376.0000 z(i) N(i) 
400.0000 300.0000 z(i) N(i) 
700.0000 200.0000 z(i) N(i) 
-999  -999 

200.0000 5.0000 z(i) EPS(i) 
-999  -999 

-300.0000  .0100 z(i) SlGMA(i) 
-250.0000  .0010 z(i) SIGMA(i) 
-200.0000  .0001 z(i) SIGMA(i) 
200.0000  .0001 z(i) SlGMA(i) 
-999  -999 
23.000000 

190.2113 376.0000 z(i) N(i) 
390.2113 300.0000 z(i) N(i) 
690.2113 200.0000 z(i) N(i) 
-999  -999 
190.2113  5.0000 z(i) EPS(i) 
-999  -999 

-309.7887  .0100 z(i) SIGMA(i) 
-259.7887  .0010 z(i) SIGMA(i) 
-209.7887  .0001 z(i) SIGMA(i) 
190.2113  .0001 z(i) SIGMA(i) 
-999  -999 
23.500000 

161.8033 376.0000 z(i) N(i) 
361.8033 300.0000 z(i) N(i) 
661.8033 200.0000 z(i) N(i) 
-999  -999 
161.8033  5.0000 z(i) EPS(i) 
-999  -999 

-338.1967  .0100 z(i) SIGMA(i) 
-288.1967  .0010 z(i) SIGMA(i) 
-238.1967  .0001 z(i) SlGMA(i) 
161.8033  .0001 z(i) SIGMA(i) 
-999  -999 
24.000000 

117.5570 376.0000 z(i) N(i) 
317.5570 300.0000 z(i) N(i) 
617.5570 200.0000 z(i) N(i) 
-999  -999 
117.5570 5.0000 z(i) EPS(i) 
-999  -999 

-382.4430  .0100 z<i) SIGMA(i) 
-332.4430  .0010 z(i) SIGMA(i) 
-282.4430  .0001 z(i) SIGMA(i) 
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117.5570  .0001 z(i) SIGMA(i) 
-999  -999 
24.500000 

61.8033 376.0000 z(i) N(i) 
261.8033 300.0000 z(i) N(i) 
561.8033 200.0000 z(i) N(i) 
-999  -999 
61.8033 5.0000 z(i) EPS(i) 
-999  -999 

438.1967  .0100 z(i) SIGMA(i) 
388.1967  .0010 z(i) SIGMA(i) 
338.1967  .0001 z(i) SIGMA(i) 
61.8033  .0001 z(i) SIGMA(i) 
-999      -999 

Example 2 Output 
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Figure 4 

Good luck, and please inform me of any problems you may have. I can be reached at 

Work Home 
UMass Lowell 36A St. Paul St. #2 
Dept. of Mathematical Sciences Brookline, MA 01854 
1 University Ave. 617-566-3089 
Lowell, MA 01854 RB733@aol.com 
978-934-2440 (Phone) 
978-934-3053 (Fax) 
Ronald_Brent@uml.edu 
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Abstract This paper presents a solution of 2D electromagnetic wave propagation problems 
in complicated terrestrial domains. Scalar 2D parabolic approximations are derived from 
Maxwell's equations for both vertical and horizontal polarization. The parabolic equations 
are then solved using a new technique involving Pad6 rational function approximations of the 
macroscopic operator. This method allows for larger-than-normal range stepping, speeding up 
computational time significantly. The Pad6 approximation and the numerical implementation 
are fully discussed. The discontinuity at the earth's surface is handled directly by using 
classical continuity conditions and deriving exact interface conditions for linking the fields 
in the atmosphere to those in the terrain. The interface conditions are then implemented using 
the concept of virtual points. Preliminary benchmark tests show the interface treatment to work 
well. Finally, several example runs are presented illustrating results. 

1. Introduction 

The solution of electromagnetic (EM) propagation problems in the terrestrial domain is a 
complicated matter. Three-dimensional (3D) variations in refraction and terrain make the full 
vector problem extremely difficult to solve in reasonable time. If one chooses to simplify 
the problem by assuming symmetry in one or more of the coordinate directions, the vector 
problem caw be uncoupled into two scalar problems [1]. However, the solution of the 
two-dimensional (2D) scalar problem is still very difficult for realistic environments. The 
parabolic approximation method is used to reduce the solution of the full two-way wave 
equation to a solution of a one-way equation [2]. Benefits of one-way propagation are the 
simple numerical implementation of range dependencies in the medium, and the avoidance 
of prohibitive numerical aspects of solving elliptic equations associated with implementing 
two range-dependent boundary conditions. The model discussed in this paper is a so called 
2.5D model using azimuthally varied vertical planar fields. Work is also proceeding on a 
3D model for higher frequencies using a hybrid combination of an underlying robust 3D ray 
trace and a 3D Gaussian beam model. 

Two of the most popular methods of solving the parabolic equations are the implicit 
finite difference (1FD) method [3] and the split-step Fourier transform method [4,5]. These 
techniques are microscopic methods in the sense that they are implementing approximations 
to the differential equation, defined microscopically. Limitations of these methods are that 
the grid mesh over which the solution is computed must be small to yield accuracy. This 
often means grid sizes on the scale of at most three wavelengths. At high frequencies and 
large propagation domains this could amount to grid sizes of hundreds of thousands by 
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millions of points needed for an accurate solution. Methods using fourth-order difference 
schemes have also been implemented to speed up computational time [6]. A better method 
to solve the equations is by symbolically integrating the equation with respect to range 
thereby obtaining the macroscopic propagator [7]. In theory if one does an 'infinitely' good 
job at approximating the macroscopic propagator it is possible to take 'infinitely' large range 
steps. Limitations in adequate range-dependent representation of the macroscopic operator, 
however, will limit actual range step sizes. In practice one still can achieve great savings 
in computational time over IFD and even possibly the split-step Fourier transform. 

The macroscopic operator is approximated using a Pade' rational function series. The 
more terms used in the approximation, theoretically the larger the range-step one can take. 
Another advantage of this method is that once the Pade" approximation for the propagator 
has been obtained computations may be applied in parallel. That is, each of the n Pad6 
approximations may be applied to the field at the same time as opposed to having to apply 
a series of products of operators sequentially. For cases when the desired result is the loss 
values only near the receiver, and not at many points in-between the source and receiver, 
the Pad6 technique applied to the macroscopic operator is ideal. It cuts down the number of 
intermediate range locations at which the field must be computed. It is reiterated, however, 
that the terrain elevation and cover will ultimately determine the range step size. 

This report summarizes the theory involved in deriving parabolic approximations to 
scalar EM propagation and the associated boundary modelling, including energy conservation 
at vertical interfaces. Also presented is the theory behind the Pad6 rational function 
approximation to the propagator, and the complete numerical implementation used in the 
code SSP. We first begin with the derivation of scalar wave equations for EM propagation. 

2. Derivation of scalar wave equations 

We begin with Maxwell's equations [1] in spherical coordinates (r,0,0), for terrestrial 
systems where r is the radial distance from the origin, 9 (measured positive down,) is the 
angle between the z-axis and the radial direction and <p is the azimuthal angle. Maintaining 
E planar in the (r, 6) plane leads to d^H = d+e = 0 for vertical polarization and H planar 
in the (r,0) plane leads to d^E = d^e = 0 for horizontal polarization. The assumption 
of symmetry in the <p direction is a necessary requirement to reduce the original vector 
problem to uncoupled scalar problems. 

These assumptions used in Maxwell's equations readily lead to the two equations 

„2 3/13 \        n1      3   [sinedH+\ , /.2 2 1 cot6 dn2\ 

(la) 

and 

l*LfrE.) + —L-± fsinö^l + (kin1-—Lj-) E* = 0    <U>) 
rdr^    ^     r2 sind d9 \        dd J     \°        r2sin20/ 

where n is the index of refraction defined as 

v2 „2 = l = (£2)2 + iL. (ie) 
£Q \ C / (OEQ 

L 



oLuiui cm muatuuig using paraoouc equations ZUO / 

Equation (la) determines the only non-zero component of H in the vertical polarization case. 
Components of E are determined in terms of Jfy using Maxwell's equations. Similarly, 
equation (lb) determines the non-zero component of E in the horizontal polarization case. 
Components of H can then be determined in terms of Ej, using Maxwell's equations. This 
last equation (lc) reflects the inclusion of conductivity via current density terms retained in 
Maxwell's equations. 

One may transform equations (la) and (lb) into Helmholtz forms by using the 
substitutions 

-Jr sin 6 V r sin B 

In doing so, equation (1) yields 

1  d   (  du{\       1 d2Ui      ( 2 2 
3 ,  *   \ c\ C\n\  r—- I + -=■—r- +   An/r =— + Srii   u, = 0 (3a) 

rdr \   dr )     r2 862      \°        4r2sin26 J 

where 

cotÖ dn      n d2n~l        d2n~x .    .     _. 

0 for i = H. 

We use the subscript notation i = V(i = H) to denote the vertical (horizontal) polarization. 
Since the computation of rectangular domains is more desirable than spherical domains, 

we now present an 'earth-flattening' approximation to our problem. We will use the smooth 
earth transformation 

x = rc6 and z = rt In (— J (4a, b) 

where re is the radius of the earth at mean sea level (approximately 6370 km). This 
transformation places the smooth earth's surface at z = 0. Terrain will be imposed later 
during the numerical implementation of the solution algorithm. The inverse transform is 
given by 

r = re exp (-) and 6 = -. (5a, b) 

In using the transformation defined in equation (4) differential operators translate as 

A_reA and ± - cxp (-5.) f. (6a, b) 

Equation (3) thereby becomes 

d2Ui     a2 

+ 
ui     / o   T     3cosec20t/re)     .    \ . tn N f + [Um* ^-^ ~ Sm,) u, = 0 (7a) 

dx2      dz2 

where m is a modified index of refraction defined as 

m = ntup I — I (lb) 
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and 

Srrii = ■ 

2»-l cot(x/re) dm        0lm 
— m 

r.m dx dx2 

m dm~x d2m~x 

— m 
8z dz2 

0 

i sV 

i=H. 

(7c) 

The solution of equation (la) using parabolic approximation techniques relies on 
segmenting the medium into a series of range independent sectors. It can be shown that in 
each of these sectors equation (la) becomes 

dx2     dz2      ' 
(8a) 

where 

K2 = 
k2m2 - 

k2
0m

2 

m dm 2™-i 

Bz 
-1 dlm 

— m 
dz2 isV (W 

and the assumption of z/rt <£ 1 is used. We have also neglected the range-dependent 
cosec2(*) term by assuming we are in the far field k0r » 1 and removed from any poles 
of the cosecant function (x < nrt) [8]. Equation (8) is the desired starting equation for 
numerical implementation. We remark that modelling of media with finite conductivity is 
achieved by replacing m2 with the expression 

™2 — m   =■ 
Co 

Cm 
+ icrn 

COSQ 

(9a. 

where cm and am are modified light speed and conductivity defined as 

cm = c exp(-z/re) and <xm = a exp(2z/rc). (9b, c 

The next section will discuss the boundary modelling including the effects anc 
corrections for discontinuities in range. 

3. Electromagnetic boundary modelling 

Since we are solving a parabolic equation with two z derivatives and one x derivative, wt 
need two conditions in z and one condition in x at every range step. Computationally we wil 
bound the domain by two horizontal planes at the top of the atmosphere and the botton 
of the terrain. Homogeneous Dirichlet conditions will be used at these boundaries anc 
techniques will be applied to reduce fictitious reflections. The fact that the terrain introduce: 
a discontinuity in the problem, and its elevation is range dependent, complicates tht 
problem slightly. Parabolic approximations assume that range-dependent environments art 
partitioned into range-independent sectors. The result is that terrain slopes are approximatec 
by a series of step-like structures. This creates a vertical interface at each range step where 
the terrain elevation is altered significantly enough. Typically, the condition at vertica 
interfaces is continuity of field, however this is not the best condition one might impose 
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We will eventually impose a conservation of energy condition at discontinuities in range to 
correct for some range-dependent errors. 

We first discuss the modelling of the horizontal interface between the atmosphere and the 
earth's surface. Assuming finite conductivity and no surface charge density the conditions 
on B, H, D and E, at an interface between two different media (£a, Ma. o"a) and (eb, Mb. ab) 
are given in [1]. In the case of a smooth interface, the normal vector e„ = er. Assuming 
also that magnetic permeability in the terrain is that of the atmosphere (both equal to the 
free space value,) these conditions imply the following six relations hold: 

E+ = E» Eei = Eeb Er!k = ^Erb (10a. b,e) 
fca 

H* = Htb Hea = Heb and Hru = Hrb. (104«,/) 

For efficient numerical computation, the approach here treats the variable terrain as 
a series of discrete vertical jumps, i.e. a staircase approximation, using smooth earth 
formulae for the horizontal boundary conditions in each sector. However, the general 
boundary conditions for the variable terrain have been determined for vertical and horizontal 
polarization. The implementation of the general conditions is being examined. 

For the case of vertical polarization, clearly one condition on H* is given by 
equation (lOd). The second condition may be obtained by manipulating Maxwell's equations 

and equation (10b) yielding 

l-UrHtl) - IlfrHW (") 
£a or eb or 

at the terrain surface. A third condition is also given by dH^/dG = dH^/06 although 
this will not be used. For the case of horizontal polarization, equation (10a) will be 
one condition, and the second is obtained by manipulating Maxwell's equations and 
equation (lOe) giving 

f(rE,a) = f(r£,b) <12> 
dr or 

at the terrain surface. The reason that the horizontal polarization case 'does not see* a 
discontinuity is because there is, in fact, no discontinuity in permeability at the surface. 

We next use the flattening transformation defined in equations (4), and equations (11) 

and (12) to give 

1  (H+     dH^\ _l(H^+ MW) (i3a) 
7t \~r7       dz  )      Bb\rc dz   ) 

and 

£*i + ?I*i\ = (Em. + iirn]. im) +-itr\r. -to ■ 

We now switch independent variables using equation (2).   In the case of vertical 
polarization one derives from equation (\0d) 

"aWVa = "b"Vb (la) 
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while equation (13a) gives 

1    >t        ,   1 3«va     f I dnh        1   \            1 3uvb ..... 
"va + r=   iT + i    "vb + z—• (14^) 

Switching to modified refraction m, in using equation (7b) these equations become 

maUva = WbKvb 05a) 

and 

1  3mb          1    \             1  3uvb      / 1  3«a     _J_ \        ,    1  3"va n<M 
"vb + r—= {-0-5 ö    "va + — • (15fr) 

mg  3z       2mbreJ mb   dz        \ml  dz       2^are/ ma   3z 

For the case of horizontal polarization, use of equation (2b) and equations (10a) and 
(12) gives 

3MHa        3"Hb /i<     fc\ "Ha = "Hb and —— = ——. (16a, 6) 
OZ dz 

For efficient numerical computation, the approach taken here treats the variable terrain in 
terms of staircase approximations using smooth earth formulae for the horizontal boundary 
conditions. The smooth earth boundary conditions are simplifications of the general 
boundary conditions for variable terrain. These conditions can be determined without 
approximations to the terrain, for the cases of vertical and horizontal polarization, in terms 
of directions normal and parallel to the terrain. Using a generalization of the earth flattening 
transformation that is applicable to the variable terrain, the general conditions can also be 
given in earth flattened coordinates (x, z). For brevity these formulae are not included. 

We now discuss the discontinuity at vertical interfaces, whether real (due to range 
dependent changes in refraction) or numerical (due to stair case approximations to terrain 
slopes.) Any parabolic equation requires two conditions in height and one condition in 
range to determine a unique solution. We have just derived the two height conditions at 
horizontal interfaces for each polarization case. When considering the condition at vertical 
interfaces, once an initial field has been specified, at each step in range the typical condition 
is continuity of field. That is to say that when a Fti of loss values has been computed at 
a particular range step, these values are used as initial data for taking the next range step. 
This condition can be replaced by other possible more desirable conditions. We use results 
from scalar acoustic problems to derive a conservation of energy condition for the vertical 
interface [9-12]. 

The basic concept is to introduce a new dependent variable obtained by scaling the 
old variable. The scale could be height-dependent. In order to properly implement an 
energy-conserving condition at a vertical interface we must derive an expression for the 
energy flux in the range direction. We begin with the complex Poynting vector S, which 
is generally taken to give the flow of energy in a propagating electromagnetic field. The 
vector is defined as [1] 

S = \E x H* (17) 

where the asterisk denotes complex conjugate. The average intensity of energy flow is taken ^_ 
as the real part of the complex Poynting vector. For the case of vertical polarization 

S=\((EBH;)er-(ErH;)e6). (18) I 
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The energy flux in the 0 direction, denoted Se, is 

Sö = -lRe(£r//;). <19> 

Using Maxwell's equations and equation (2) in equation (19) gives 

Se = \ ImfevV (20) 

In using equation (4) to switch to earth flattened coordinates the energy flux is given by 

The condition for conservation of energy along a vertical interface thereby becomes 

Im^«Ü=Imf^"Ü (22) 

where we use the subscript 'in' here to denote the incident wave while V denotes the 
transmitted wave. 

This type of nonlinear boundary condition is quite difficult to implement in practice, 
however an equivalent linear condition can be derived. By factoring equation (8a), and 
retaining the outgoing solution, one can derive 

ax 

where 

Using equation (23) in equation (22) gives 

Im(ißv>vJ2) = ImGßvjKvJ2) (24a) 

which will be satisfied if 

Q%*. - ßv%, <24» 

One could in theory apply equation (24b) as the propagator for steps across vertical 
discontinuities. The simpler method of incorporating conservation conditions via a new 
dependent variable is derived by assuming negligible propagation angles. With this 
assumption, and those to follow, equations (8fc) and (23b) yield the approximation Q « 
(K$/kiy/4 « Vm so that the condition becomes 

*/m^uWtt = Vm^"vi0 ^   ) 

where m is a modified index of refraction defined by equation (9). In deriving equation (25), 
one must assume that the terms involving z derivatives of m"1 are negligible. We obtain here 
merely a first-order correction for conserving energy. If one desired, one could implement 
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the full correction, given in equation (24b) at each range step where there is a vertical 
discontinuity of some type. This compounds the numerical process, however, and slows 
down the algorithm significantly. It has been demonstrated that the first-order correction is 
sufficient for many types of environments when considering acoustic propagation [9]. Tests 
underway also tend to support this conclusion for electromagnetic problems as well. 

Equation (25) suggests the transformation of dependent variable to be 

luv = */rnuv (26) 

and continuity of field in w will imply a first-order correction for conservation of energy in 
u. The case of horizontal polarization is analysed in a similar fashion leading to analogous 
results and a transformation identical to equation (25). For brevity, these results are omitted. 

In using this transformation for conserving energy the elliptic equation that is solved is 
given as 

where this equation has been derived by substituting equation (26) into equation (8a). In 
implementing the energy-conserving transformation one must now transform the interface 
conditions given in equations (15) and (16). For the case of vertical polarization conditions 
on luv become 

•v/m^tuva = V^b^vb (28Q) 

and 

1/13«, 1     \ 1    3">va      1/   1    3mb 1     \ 1    dwVh 
WVa+-T7?-^r- = -     "~Tn^T 5/9     ™Vb + 2 W2 dz       rtm\»)    "     ml"   **   " 2 \m^  ^      r^2)    "°     mf   Sz   ' 

(28fc) 

The conditions on WH fr>." the case of horizontal polarization become 

1 

'ma \/ttib 
lÜHa = —p=WHb (29a) 

and 

3ma ,      1    3tuHa 
1     9mb ,      J    9ujHb       /OQM 

2ml'2  dz WHa T^3z 2ml/2  dz    "°     Jm~b   dz 

The preceding derivation has assumed that the complex part of m is small compared to 
the real part. This is true over most of the frequency regime and terrain cover of interest. 

4. Numerical implementation 

Our goal is to solve the differential equation, equation (27), 

d2wt        ,- d2  ( w, \      „2 
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subject to homogeneous Dirichlet conditions at the boundaries, and the interface conditions 
in equation (28) for vertical polarization or equation (29) for horizontal polarization. The 
modified wavenumber, *,, is defined in equation (8fc). For convenience in upcoming 
notation, we drop the i subscript in favour of the reader understanding that all results 
apply to both the vertical and horizontal polarization cases. This equation may be formally 

factored to give 

dx 

where 

as the differential equation governing the outwardly propagating wave. The differences 
between this formulation and that in equation (23) is numerically motivated and will be 
discussed shortly. Removing the exp(i*o*) from the solution u, equation (30a) becomes 

^ifcf-l + yr+ßW (3D 
dx \ ' 

One may formally integrate equation (31) to give 

w(x + Ax, z) = exp (i*oAx (-1 + >/T+ß)) w(x, z). (32) 

Following the method of Collins we apply a Pade" approximation [7]: 

np r\ 

where the coefficients alt„p and bt,np are determined numerically using the approach in [11]. 
The method used in [11] converges faster using the formulation in equation (30) than that 
in equation (23). The number np is the Pad6 number, or the number of terms used in the 
series approximation. 

Substituting equation (33) into equation (32) one obtains the split-step Pad6 solution, 

W(x + Ax,z) = w(x,z) + Z    l+blnpQ   ■ (34) 

The terms in the sum may be computed in parallel, which is what makes this technique so 
appealing. That is we compute 

«*.<) = ^^ (35a) 
1 +Ol.np(2 

in parallel and then calculate 

np 

)(x + Ax, z) = w(x,z) + J2 M*' z). 
np 

(35b) 
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Let us discretize the problem as follows. First we will use a simple linear transformation 
to invert the problem so that z is measured positive down from the top of the atmosphere. 
For ease of notation we will still use the variable z rather than defining a new variable, say 
z'. Then we define a grid with mesh sizes dc, and dz. Let 

w] =w(ndx,jdz) (36a) 

and 

xlr?j = 1n(ndx,jdz) (366) 

When discretizing the differential operator Q, equation (35a) becomes a tridiagonal 
linea: system of which the jth equation is 

RhjWj-i + R2,.jtfj + R3IJKJ+\ = SlUwJ-i + S2U™] + S*ijwJ+l (37) 

where R\, R2, R3, S\, SI, and S3, are dependent upon dz and medium properties through 
the function K and m.   Once this system is solved for yjrfj one uses equation (35ft) to 

compute the solution Wj+l as 

>ri=tf+E+?j- (38) 

The numerical domain is terminated with homogeneous Dirichlet conditions on the 
field w. To avoid spurious reflections from the top of the atmosphere, an absorbing layer 
is introduced with complex wavenumber. Similarly, at the bottom of the earth layer, one 
increases conductivity so as to eliminate reflections. For most typical ground cover with 
non-zero conductivity the Earth acts as an absorbing layer naturally. Increasing conductivity 
near the bottom of the domain insures no reflections. As for implementing the interface 
conditions as given in equations (28) and (29) one uses the idea of virtual points [11]. 
Assume the atmosphere-terrain interface occurs between the y'th and (j + l)th notch points. 
We n'.ace two virtual points a' and b' in between the two actual points, such that the point 
a'(b') represents the continuation of the atmospheric (terrain) solution one notch point. 

This technique is described fully in [10]. By requiring each V"; t0 satisfy the 
linear interface conditions at the earth's surface, one automatically satisfies the interface 
requirement on the entire solution m?. The discretized equations at the nodes on each side 
of the interface are 

RhjWj-i + R2ijf"j + R3ijfl* = 51uw;_, 4- S2,jw] + S\jwl (39a) 

and 

Rhj+iWv + R2lJ+^j+l + R\j+\^j+2 = Shj+iK + S2,J+iw]+l + S3lJ+lw]+2 

(39b) 

We approximate 

u;a = A(w; + u£) u>b = 5K+,+0 (40a, b) •" 

dw&      < - Uj 

dz            dz 
and         —— = -L—\  

dz             dz 
(40c, d) 
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at the interface, and substituting these expressions in equation (28) for vertical polarization 
or equation (29) for horizontal polarization allows one to solve for the virtual point solutions 
in terms of actual notch point solutions. For the case of vertical polarization, using 

equation (40) in equation (28) gives 

Adw] + K) = A2(w]+]+wn
v) (41a) 

and 

where 

A3(w] + <) + A4« - w]) = A5(w]+, + O + Aeiw]^ - wn
b.)    (41*) 

Ai=JJfTa A2 = Jm (41c'<*) 

4  \rtml'       ma'    °Z J m* 

AJ=*(_^ + 4J^) and A6 = -L. (41**) 
4  \rFml/2      ml'1  9*  } mh' re"'b mb 

(42a) 

(42*) 

(42c) 

(42<0 

Solving equations (41a) and (41b) for the virtual solutions gives 

iwj =aniü"+ai2U>"+, 

and 

1< =«21^; +«22^"+1 

where 

«„ = (A!(A5 - A6) + A2(A4 - A^/iA^Ae - A5) + A2(A3 + A4)) 

a« = (2^A6)/(A,(A6 - As) + A2(Ai + A4)) 

a2i = (2A, A4)/(Aj(A6 - A5) + A2(A^ + A4)) (42e) 

and 

a22 = (A,(A5 + A6) - A2(A3 + A^))/(Ax(A6 - A5) + A2(A3 + A4)). (42/) 

One may also repeat this procedure for each individual V"j. and since they each satisfy 
the same interface conditions one uses equation (42) exactly for virtual point solutions f^ 

and ^/V The result is that at the interface equation (39) becomes 

RhjKj-\ + (R2<J + anR\Wh + anR3uKj+\ 
= Sl/.yu;;., + (52/j +auS3ij)w] +anS3,jw]+], 

and 

a2iÄl/,y+i^/j + (*2u+i +«22/?l;.7+l)^J+l + ^3,J+,^"y+2 

= «21Slu+,u>; + (52/j+i +«2251/J+i)u;;+1 + S3,j+xw]+2. (43*) 

All 

(43a) 
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A similar analysis in the horizontal polarization case yields very similar results in 
terms of equation (43), with differences in the definitions of the a,-y coefficients. Using 
equation (40) in equation (29) gives the equations 

Ä, (w] + u£) = Ä2K+i + O <44fl) 

and 

Ä3(w] + u£) + Ax« - w]) = Ä4(w]+l + wn
b,) + Ä2(u>;+, - O     (446) 

where now 

M = 4= Ä2 = -L= (44c, d) 

Solving equations (44a) and (44b) for u# and u£ yields 

lü^än^+änu;;^ • (45a) 

and 

u£=ä2iu>;+ä22U>;+, (45&) 

where 

äj, =ä22 = (Ä,Ä4-Ä2Ä3)/(2ÄiÄ2 + Ä2Ä3-Ä,Ä4) (45c) 

ä12 = (2Äl)/(2ÄiÄ2 + Ä2Ä3-Ä,Ä4) (45d) 

and 

ä2i = (2Ä2)/(2Ä,Ä2 + Ä2Ä3-ÄiÄ4). (45«) 

The final implementation is exactly that in equation (43) with au being replaced by äu. 
Therefore the numerical implementation of the terrain interface is a simple modification 

of the algorithm at the ;th and 0" + l)th nodes. The code SSP is currently undergoing 
testing. The next section discusses preliminary testing and evaluation of SSP including the 
atmosphere-terrain interface implementation. 

5. Numerical examples 

The numerical code SSP is currently being tested. The results presented in this paper do not 
utilize the advantage of parallel processing. Preliminary solutions were calculated on PCs 
simply to test the code and demonstrate certain aspects of this method. The final program 
will be run on a parallel machine. References [8-10] suggest run time speeds 100 times [ 
faster than conventional methods. ' *- 
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Since the implementation of interface matching conditions is an integral part of the 
program, examination of the numerical methods used there is critical. While some acoustic 
propagation models do incorporate horizontal interfaces many more do not. It seems that 
the discontinuity in the acoustic case is slight as compared to the EM case. So slight as to 
permit one to smooth out discontinuities or simply ignore them altogether. This is certainly 
not the case for electromagnetic propagation. A series of tests, too comprehensive to present 
here, have examined this aspect of the problem. By altering acoustic parameters so as to 
have a discontinuity of order similar to the EM case, the results show that one must also 
incorporate the acoustic matching conditions to have accurate solutions. 

The simplest analytical model to test the method is the Lloyds mirror problem, in which 
th6 medium is taken as homogeneous with homogeneous Dirichlet conditions at the top 
and bottom of the domain. The source frequency is taken as 4.99 MHz, with dr = 2 m, 
and dz = 0.5 m. The source and receiver height are both taken to be 75 m, and the entire 
thickness of the domain is 200 m. Figure 1(a) shows a comparison of the propagation 
losses as computed by the program SSP (full curve) and the program EFEPE (dotted). The 
code EFEPE is the original acoustic code and was benchmarked against a normal mode 
program showing excellent agreement [7]. As one can see there is virtually no difference 
in solutions. We were satisfied that the EM adaptation was coded correctly. We next 
considered the interface modelling. We are currently looking into benchmark models for 
EM propagation so as to fully test the numerical implementation of the interface matching 
conditions. However, there are existing acoustic benchmark models available immediately. 
We are able to implement acoustic boundary conditions, similar to our electromagnetic 
conditions, in the code and compare them to results that were benchmarked against normal 
mode solutions. The model we choose is called Case 3b from the NORDA Parabolic Equation 
Workshop [13]. It is basically one homogeneous medium overlying a different homogeneous 
medium with absorption. The density discontinuity at the ocean-sea floor interface is very 
similar to the light speed discontinuity in the EM problem at the atmosphere-terrain interface. 
While the interface conditions for the acoustic model are not as complicated as the EM 
problem, the numerical implementation using virtual points is identical. 

Having implemented the interface conditions in the acoustic code, figure 1(b) compares 
the results from SSP (full) and the original acoustic program EFEPE (dotted,) which was 
benchmarked against a normal mote solution. The output from EFEPE was in excellent 
agreement with the normal mode solution except at null locations, specifically the one near 
7 km. While there are subtle differences in losses, they are at most 1 dB, and the curves 
generally agree quite well. Work is currently underway to test the EM interface conditions. 

The remaining figures demonstrate the method's ability to greatly increase range step 
size. We will use the Lloyds mirror example to illustrate. Using the EFEPE result in 
figure 1(a) as a benchmark we have calculated the solution using the code SSP with np = 4 
and dr = 50 m. Figure 2(a) shows the results with fair agreement that decays as range 
increases. When increasing np to 8, as in figure 2(b), excellent accuracy is obtained. 
For parallel computations this could mean very little extra run time achieving much better 
accuracy. When the range step is increased to 100 m, as in figure 3(a), the accuracy is still 
maintained for np = 8. When the range step is increased to 200 m, the accuracy begins 
to degrade. Finally, when increasing np to 10, shown in figure 4, accuracy, while still not 
perfect, is increased greatly. 

In theory, one can take very large range steps when using this method. One need only 
take np large enough so that the Pad6 approximation gets arbitrarily accurate. However, the 
limiting factor will be terrain and atmospheric conditions. Taking range steps too large could 
result in 'stepping over mountains'. As is typical with parabolic approximation methods, 
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Figure 1. (a) The Lloyds mirror test problem. Source 
and receiver height are 75 m, and source frequency is 
4.99 MHz. Intensity loss in dB is plotted against range 
in km. SSP (full curve) and EFEPE (dotted curve) show 
excellent agreement, (b) Acoustic benchmark Case 3b 
in [13]: SSP (full curve) and EFEPE (dotted curve) show 
excellent agreement. 

m 
"O 
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o 

Lloyds Mirror Test Case 
(=4.99 MHz     dz=.5m 

o     np=8.     Or=SOm 

—  Benchmark   Solution 

Range   (km) 

(b) 

Figure 2. Lloyds mirror test problem: comparison 
of SSP with benchmark solution for (a) np = 4 and 
dr = 50 m, and (b) np = 8, and dr = 50 m. 

the range-dependent problem is sectored into range-independent slabs. Discretization of 
a continuous medium results in staircase effects. These effects are minimized by taking 
smaller range steps. Therefore there is still a lot of work to be done in the delicate matter 
of trading off time (dr and np as large as possible) and accuracy (dr small enough to 
capture the true physical properties of the medium). Sensitivity testing and benchmarking 
are crucial aspects of this problem and current efforts are being placed on these areas. 

6. Summary 

Scalar Helmholtz equations have been derived directly from Maxwell's equations for 
the cases of vertical and horizontal polarization. The primary assumption necessary for 
such a reduction is that the medium is approximately symmetric in one spatial direction. 
Factorization of these equations yield parabolic equations which are then symbolically 
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Figure 3. Lloyds mirror test problem: comparison 
of SSP with benchmark solution for (a) np = 8 and 
Ar = 100 m, and (b) np = 8, and dr = 200 m. 

Figure 4. Lloyds mirror test problem: comparison 
of SSP with benchmark solution for np = 10 and 
dr = 200 m. 

solved in the range direction. What one obtains is a symbolic expression for the range- 
stepping macroscopic operator. Rather than discretize the microscopic operator, a Pad6 
series approximation is used for the macroscopic operator. In theory this allows very large 
range steps. Step size is still ultimately determined by medium characteristics. However 
there are numerical advantages over typical finite difference methods, the main being the 
suitability of the method to be parallelized for multi-processor computers. 

Interface conditions have been fully developed for linking the atmosphere to the 
ground. Methods for conserving energy at vertical interfaces has also been discussed, 
with the result that to first order, a simple transformation of dependent variable allows 
for implementation. This will provide corrections to sloping terrain errors as well as 
range-dependent refractive effects. The numerical implementation of the split-step Pad6 
solution and interface conditions has also been presented. Several benchmark calculations 
and interface modelling comparisons were also presented. A full description of the code 
SSP is contained in technical reports available from the authors upon request. The user's 
manual includes program flow charts, input descriptions and output options. Also described 
in this report is a post processing graphics program called GRAPH. This program produces 
contour graphs for visual display only. 
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Appendix B 
Absorbing Layer Validation 



Absorbing Layers 

A major complication in the solution of propagation problems in physically infinite 

media is the attenuation of fictitious reflections from computational boundaries necessary 

to terminate the calculation. For full elliptic or hyperbolic problems the boundaries are not 

only the top or bottom of the domain but the right-hand edge. For a parabolic problem one 

need only worry about the top and bottom edges There are two approaches to solving such 

problems. The first technique is to use an impedance-type boundary condition at the 

computational edge. The second technique places an absorbing layer at the region in 

question. This layer has the property that the index of refraction has an imaginary 

component that varies with height. The absorbing potential (the imaginary piece) must vary 

in such a way as to eliminate reflections. The function has a maximum at the end of the 

absorbing layer (in our case near the top of the domain) and decreases exponentially as the 

distance from the boundary increases. I have obtained the following information from Dr. 

Steven Wales, at N.R.L., and I (he) has no explanation as to why it works but after years of 

experience this is what he and NRL came up with. The imaginary part of the index of 

refraction is taken as 

f     f.      -     N^ 
v0exp 

~{2-zB ) 

I   (16A)2   J 

where v0 is taken to be .10 (in mks system)., and X is source wavelength.  In terms of the 

reference wave number k0, the function is 

v0 exp(-9.8946468 x 10"5 *0
2 (r - zB f) 

Dr. Wales had suggested that for most frequencies of interest the width of the 

absorbing layer should be about 1/3 the thickness of the actual medium, however, he also 

mentioned that at the lower frequencies the width had to be greater. I began testing the 

layer by picking various width factors. After several test runs I have determined 

appropriate width factors for frequencies of 1, 3, 4, 5, 10, 20, and 25 MHz. It seems that 

for frequencies above 25 MHz, the choice of a width factor = 1/3 is in fact good. However, 

for the lower frequencies several values had to be selected. The results are summarized in 

the following table. 
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Frequency 

(MHz) 

Wave number 

<*o) 

Width Factor 

1 .020958 15 

3 .062874 6 

4 .083832 4 

5 .010479 2 

10 .20958 1 

20 .41916 .56 

25 .52396 1/3 

By width factor, I mean the amount of the requested physical domain that is extended. I: 

HMAX1 is 750, and the width factor is 1/3 then the absorbing layer is computed as 250 n 

wide. If HMAX1 is 1000m, and the width factor is 13, then the absorbing layer is taken tc 

be 13,000m. The following pages show comparisons of the code SSP with the analytica 

solution for an infinite homogeneous half space Dirichlet problem . The solution to tht 

spherically symmetric wave equation is 

u = -exp(ik0p) 
P 

where p is the distance from the source to the receiver. 

Ignoring curvature effects, let a cylindrical coordinate system be placed so that . 

source is positioned on the 2-axis at (r,zs). If the earth (at z = 0,) is such that u = 0 there 

one may use the method of images to determine that 

u = —exp(/*0p, ) exp(ik0pz ), 

where 

and 

A = V'2 +(*-o2> 

p2 = Jr2 + (z+z,)2. 
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Figure 1-7 show a comparison of SSP and the analytical solution for frequencies of 

1, 3, 4, 5, 10, 20, and 25 MHz. In each case there are three figures (i.e. Fig (la), (lb) and 

(lc)),' Figure #'(a), shows the entire interval 0 < r < 50 km, while Fig. #b, and #c show 

blow ups of the range intervals 0 < r < 2 km and 48 < r < 50 km respectively. Clearly 

there is excellent agreement. The source and receivers are positioned 250 m above the 

surface. I ch -ose the medium to be 2000 m high. There are some phase errors early on, but 

I cannot be sure if the errors are due to the absorbing layer or the inherent problems that 

PE's have in the near-field. In either case the phase errors disappear soon afterwards. For a 

source frequency of 1 MHz, as seen in Fig (lc), there are differences of at most O(.01) dB. 

This is also true for/= 3 MHz (Fig. (2c)) and/ = 4 MHz (Fig. (3c)). For source 

frequencies of 5, 10 and 20 MHz, the differences are even less than the preceding cases. 

These frequencies correspond to acoustic frequencies of approximately 25, 50, and 100 Hz. 

This was the frequency range of interest, I believe, to NRL and Steven Wales. For higher 

frequencies, the agreement begins to decay slightly as seen in Fig. (7c). 

To check the programs interpolation of layer widths, I ran test cases for frequencies 

of 2, 3.5, 4.5, 7.5, 15, and 22.5 MHz. These results are shown in Fig. 8 - 14, with similar 

range intervals as in the first 7 graphs. The results show excellent agreement at the longer 

ranges with dB differences typically of the order .01. In some cases there are differences of 

up to .15 dB, but that is still quite excellent. 

Figure 14 shows results for a source frequency of 50 MHz. This is the case where I 

saw the greatest difference.   Clearly, there should be some modification of the amplitude 

and half-v.ldth of the Gaussian absorbing potential as frequency is increased. However, .15 

dB is rather a small difference at 25 km which is more than 4000 wavelengths. For future 

work, I suggest that someone does look into modification of the absorbing potential for 

higher frequencies. 

I also ran a few cases with different source and receiver locations for long ranges. 

Figure 15 show results for a source frequency of 6.2 MHz. The source is located at 182 m 

above the surface and the receiver is 262 m high. The maximum height (HMAX1) is 3000 

m. As seen in Fig (15c), the solution begins to decay near r = 100 km. It is clear that while 

the differences are less than 1 dB, the oscillations are increasing. The differences are 

resolved by raising HMAX1 to 5000 m, as in Fig (15d), and errors are now again between 

.01 and . 1 dB.   Figure 16 is a situation where the source frequency is 72.1 MHz and source 

height is 151 m. The receiver is located at 82 m above the surface and HMAX1 = 2000 m. 

While the maximum range is 50 KM not 100 km as in the previous example, the number of 
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wavelengths is approximately 12,500. This is a very large problem. As seen in Fig (16c), 

there is again excellent agreement between the analytic and computed solutions. 

I ran these odd number cases just to make sure I wasn't getting any funny results b 

placing the source and receiver at 250 m which was at a depth node (harmonically speakm. 

since the medium was 2000 m wide. Well, I now trust this aspect of the program. Thenc 

work is to get to the Beam program. 
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wavelengths is approximately 12,500. This is a very large problem. As seen in Fig (16c), 

there is again excellent agreement between the analytic and computed solutions. 

I ran these odd number cases just to make sure I wasn't getting any fanny results b 

placing the source and receiver at 250 m which was at a depth node (harmonically speakk 
since the medium was 2000 m wide. Well, I now trust this aspect of the program. Thene: 

work is to get to the Beam program. 
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Appendix C 
Source Modeling Results 



SSP Source Model Sensitivity Analysis 

In the process of studying the absorbing layer problem, discussed in the last 

section, I found that a detailed analysis of the source models used in SSP was necessary. 

It seemed that solutions converged only after the grid sizes smaller than three points per 

wavelength. Since the efforts would yield preliminary sourrs sensitivity data this was very 

important. There are three types of source models used in SSP 

Gaussian Model 

real(w) = -M- 
(     ( 

exp 
V 

*oa(x-0' 
2^     ( «d+O^ 

V 
-exp 

JJ 

Green's Function Model 

-/ 

real(ii(r)) = ^ a(z-z,)exp (   *{(*-*. ) 
3.0512 

2\ 

a(r+z,)exp 
(     1A 

3.0512 

»v\ 

where a(z) = (1.4467 - 0.420U0V) 

Normal Mode Model 

i/ / ^    2V2lrfsin(^zf)sin(V) „ «I«,)).—J    ^_t;    *. 

While the rule of thumb in the under water acoustics community is three points per 

wavelength for grid sizes, this choice is seemingly too sparse for some of the source 

models in SSP. Figures 1-3 (found at the end of the discussion) show the real part of the 

solution generated by the three source models for three frequency cases of f = 5, 10 and 

50 MHz. The medium is assumed to be 250 m high, and the source is at 100 m. In Figure 

1(a), where the source frequency is 5 MHz, and dz is 25 m, the Gaussian startup (rep 

circle) is non zero at only 3 points. The Green's startup is non zero at 7 points. The 

normal mode is very different with its side lobes, but there still is a rough sampling of the 
oscillations. When decreasing dz to 10 m, as in Fig 1(b) already there is a better sampling. 

Figures 1(c) and 1(d) show over sampled cues. The same is true for higher frequencies as 

show for f = 10 MHz (Figure 2.) and f = 50 MHz (Figure 3). Since the oscillations 

become so wild at 50 MHz blowups are show zeroing in on the interval [75,125] km. Cl- 



However, it is apparent from examine normal mode startup fields that for f = 5 

MHz, when dz = 10 m ( 6 points per wavelength) the trig functions are sampled well. For 

f = 10 MHz, dz = 5 m gives a similar sampling as in the f = 5 MHz case. Finally for f = 

50, as expected the sampling rate is the same when dz = lm. As for the Green's function 

and Gaussian function startup fields, one can calculate the dz by fixing the number of 

points needed for a fixed fall-off rate. That is if we let 

z-z,-idz 

then the main contributing exponential is at Me when the argument 

k2dz2i2 

-2—— = 1 for Green's startup 
3.0512 

k2dz2i2 

and -2 = 1 for Gaussian startup. 
4 

So for example to sample the main beam of a Gaussian startup with 5 points, 2 on each 

side, set i = 2 and the equation gives 

For f = 5 MHz, this equation gives dz = 9.6, for f ' 10 MHz, this equation gives 

dz = 4.8, and for f = 50 MHz, this equation gives dz - .*6. Checking the figures (lb), 

(2b), and (3c), we see it is true. The main lobe falls to l/e of its maximum value by the 

second notch point on each side. And since 

kn = 
2nf _2n 

v0 c0        X 

this means that 

J      X    X 
2n   6 

CX 



or approximately six points per wavelength. However, from my test runs I don't belive 

this is a fine enough mesh for proper source sampling. I suggest a minimum of 12 points 

per wavelength for convergent solutions (as far as the source model is concerned). 

For now this can be handled by tolerating longer run times, however, for intensive 

computation this might be too stringent. An adaptive routine might be desirable. That is 

one that starts out with a mesh for proper source sampling, then after a few steps cuts 

back on the mesh size. This is not a trivial matter, and it has been decided to table that 

effort and study the real problem encountered. 

As for a comparison of source models, it appears that in the far field removed from 

the source, it really does not matter which particular source one chooses. In Figure 4 I 

have plotted the losses for the three different source models. In the near field at ranges 

less than 10 km ( Fig 4(b) and 4(c)), the solutions do disagree, but by the far-field at 

ranges of 20 to 25 km (Fig 4(d)), all three solutions agree quite excellently. I thought that 

the absorbing layer might be influencing the results so I ran the problem again without it. 

These results are shown in Figure 5. By ranges of 5 km, all three solutions already agree 

well. (Fig 5(c) and 5(d).). In Figure 6 the frequency has been raised to 10 MHz. Similar 

results are seen with excellent agreement. Finally in Fig 7, frequency is raised to 25 MHz, 

and there is still excellent agreement between the solutions in the far-field. 

Q> 
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